DENDIS: A new density-based sampling for clustering algorithm
نویسندگان
چکیده
منابع مشابه
DENDIS: A new density-based sampling for clustering algorithm
To deal with large datasets, sampling can be used as a preprocessing step for clustering. In this paper, an hybrid sampling algorithm is proposed. It is density-based while managing distance concepts to ensure space coverage and fit cluster shapes. At each step a new item is added to the sample: it is chosen as the furthest from the representative in the most important group. A constraint on th...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملA New Fast Clustering Algorithm Based on Reference and Density
Density-based clustering is a sort of clustering analysis methods, which can discover clusters with arbitrary shape and is insensitive to noise data. The efficiency of data mining algorithms is strongly needed with data becoming larger and larger. In this paper, we present a new fast clustering algorithm called CURD, which means Clustering Using References and Density. Its creativity is capturi...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملpiClust: A density based piRNA clustering algorithm
Piwi-interacting RNAs (piRNAs) are recently discovered, endogenous small non-coding RNAs. piRNAs protect the genome from invasive transposable elements (TE) and sustain integrity of the genome in germ cell lineages. Small RNA-sequencing data can be used to detect piRNA activations in a cell under a specific condition. However, identification of cell specific piRNA activations requires sophistic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2016
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2016.03.008